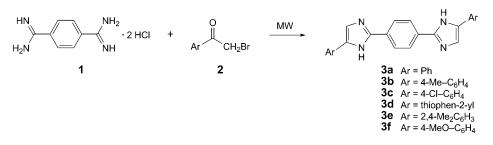
# Novel Disubstituted Phenylene-Linked Bis-imidazole Derivatives: Facile Synthesis and Optical Properties

by Guang-Liang Song, Hong-Jun Zhu\*, Lei Chen, Shan Liu, and Zhong-Hua Luo

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, P. R. China (phone: +86-25-83172358; fax: +86-25-83172358; e-mail: zhuhjnjut@hotmail.com)

Six novel disubstituted phenylene-linked bis-imidazole derivatives, 3a-3f, were prepared by a onepot, microwave-assisted method under solvent-free conditions, in yields ranging from 61.6 to 85.6%. The new compounds were characterized by <sup>1</sup>H- and <sup>13</sup>C-NMR, UV/VIS, and fluorescence spectroscopy, and mass spectrometry, as well as by elemental analyses. The influence of substituents and solvents on the optical properties of 3a-3f was investigated. It was found that there is little influence on absorption and excitation spectra in contrast to emission spectra. Compounds 3a-3f exhibit strong fluorescence in solution, their fluorescence quantum yields ranging from 0.27 to 0.96.


Introduction. - New molecular fluorophores, which play an important role in fluorescence sensors [1-3], fluorescence imaging [4][5], and fluorescence switching [6-8], have recently attracted great interest in the analysis of biological systems [9-13] and optical applications [14-18]. Among these molecular fluorophores, phenylene-linked bis-imidazole derivatives have been used due to their unique optical properties [19-21]. In addition, they can be used in two-photon fluorescence and as pH probe [22][23]. To the best of our knowledge, several reports on the synthesis and on the physical properties of tetrasubstituted phenylene-linked bis-imidazole compounds have been published [24-29], and the synthesis of phenylene-linked bis-imidazole compounds was only accomplished by condensation of 1,2-dicarbonyl compounds and aldehydes with NH<sub>3</sub>. However, to our surprise, studies on the synthesis and optical properties of disubstituted phenylene-linked bis-imidazole compounds were limited. In 1975, Mahadik and Sunthankar [30] reported the synthesis of some N,N'-disubstituted phenylene-linked bis-imidazoles with yields of 50-60%. Since then, there were no reports on these compounds, except for the one of Jadhav and co-workers [24] in 2008, who described the synthesis of 2,2'-(1,4-phenylene)bis[5-phenyl-1H-imidazole] only, without giving any optical properties. Considering the above reports, the synthesis of novel disubstituted phenylene-linked bis-imidazoles and the study of the underlying structure – property relationships was a challenge.

In this article, a microwave-assisted and solvent-free method for the synthesis of 5aryl-substituted phenylene-linked bis-imidazoles is reported, involving condensation of benzene-1,4-dicarboximidamidium dichloride with 1-aryl-2-bromoethanones in the presence of using KHCO<sub>3</sub> as acid-binding agent. The six novel disubstituted phenylenelinked bis-imidazole derivatives 3a-3f were synthesized, characterized, and their optical properties investigated.

<sup>© 2010</sup> Verlag Helvetica Chimica Acta AG, Zürich

**Results and Discussion.** – Synthesis and Characterization. Monoimidazoles have already been prepared with an efficient procedure by using benzamidine hydrochloride monohydrate and 1-aryl-2-bromoalkan-1-ones as substrates [31-36]. According to these method, disubstituted phenylene-linked bis-imidazole derivatives were obtained with quite low yields after refluxing for 72 h and purification by silica-gel column chromatography (e.g., for compound 3a only 30% yield). Considering that the microwave-assisted synthesis method has been efficient in some condensation reactions [37-39], an improved method for synthesis of 3a-3f was elaborated successfully under solvent-free conditions by microwave irradiation. Under the microwave-assisted conditions, the reaction time to yield, e.g., 3a was dramatically reduced from the 72 h in the conventional heating to just a few minutes. More important, the starting materials and by-products in the crude products were easily removed by washing with hot brine followed by recrystallization from MeOH/THF 1:1. The desired products 3a - 3f were thus obtained in 61.6-85.6% yields (Scheme). The improved method is an environmentally friendly and effective procedure for the synthesis of disubstituted phenylenelinked bis-imidazoles 3, starting from benzene-1,4-dicarboximidamidium dichloride (1) and 1-aryl-2-bromoethanones 2. All the compounds were obtained as white solids, and their structure was confirmed by <sup>1</sup>H- and <sup>13</sup>C-NMR spectra, EI-MS, and elemental analyses. Compounds 3a-3f were soluble in  $CHCl_3$ , toluene, THF, MeOH, and HCO<sub>2</sub>H in varying degrees.

#### Scheme. Synthesis of Bis-imidazole Derivatives 3



Photophysical Properties of 3a-3f in Solution. The absorption spectra of the bisimidazoles 3a-3f in MeCN solution  $(10^{-5} \text{ M})$  are shown in *Fig. 1*, and the absorption properties are given in *Table 1*. There are two absorption bands at *ca.* 275 and 340 nm, and they all can be assigned to the  $\pi - \pi^*$  electron transitions by virtue of their large epsilon ( $\varepsilon \approx 10^4 \text{ M}^{-1} \text{ cm}^{-1}$ ). All disubstituted phenylene-linked bis-imidazoles 3a-3fhave an almost identical absorption maximum ( $\lambda_{\text{max}}^{\text{Abs}}$ ), ranging from 339 to 348 nm, which suggests that the  $\lambda_{\text{max}}^{\text{Abs}}$  of these compounds mainly depends on the length of the main conjugated structure with little effect of the substituents.

The dilute-solution  $(10^{-5} \text{ M})$  fluorescence spectra of  $3\mathbf{a}-3\mathbf{f}$  in MeCN are shown in *Fig. 2*, and the fluorescence properties and corresponding  $\Phi_f$  are given in *Table 1*. All compounds  $3\mathbf{a}-3\mathbf{f}$  emit blue light with an emission maximum in the range of 389.5–419.5 nm. Compared to  $3\mathbf{a}$ , the alkyl-substituted  $3\mathbf{b}$  and  $3\mathbf{e}$  and chloro-substituted  $3\mathbf{c}$  show blue-shifted emission spectra, while the thiophene-substituted  $3\mathbf{d}$  and the MeO-substituted  $3\mathbf{f}$  show a red shift. The largest red shift (17.5 nm) of  $3\mathbf{d}$  is a result of

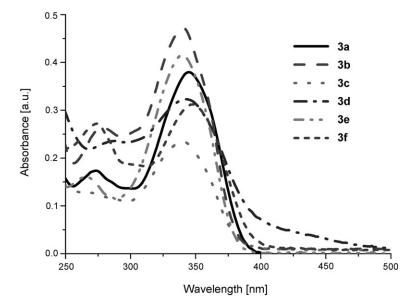



Fig. 1. UV/VIS Absorption spectra of 3a-3f in MeCN solution ( $c = 10^{-5}$  M)

Table 1. UV/VIS Absorption and Fluorescence Data for 3a-3f in MeCN ( $c = 10^{-5}$  M)

|    | $\varepsilon \; [10^{-4} \text{ m}^{-1} \text{ cm}^{-1}]$ | $\lambda_{\max}^{Abs} [nm]$ | $\lambda_{\max}^{\text{Ex}} [nm]$ | $\lambda_{\max}^{\text{Em}} [nm]$ | Stokes shift [nm] | $E_{\rm g}^{ m Opt \ a})  [{ m eV}]$ | $( \varPhi_f{}^b)$ |
|----|-----------------------------------------------------------|-----------------------------|-----------------------------------|-----------------------------------|-------------------|--------------------------------------|--------------------|
| 3a | 3.80                                                      | 345                         | 347                               | 402.0                             | 55.0              | 3.19                                 | 0.74               |
| 3b | 4.73                                                      | 340                         | 338.5                             | 392.5                             | 54.0              | 3.25                                 | 0.88               |
| 3c | 2.35                                                      | 340                         | 340.5                             | 389.5                             | 49.0              | 3.25                                 | 0.64               |
| 3d | 3.23                                                      | 348                         | 349                               | 419.5                             | 70.5              | 3.06                                 | 0.27               |
| 3e | 4.15                                                      | 339                         | 332                               | 396.5                             | 64.5              | 3.28                                 | 0.96               |
| 3f | 3.12                                                      | 348                         | 348.5                             | 414.0                             | 65.5              | 3.16                                 | 0.77               |

<sup>a</sup>) Estimated from the onset of the absorption spectra ( $E_g^{\text{Opt}} = 1240/\lambda_{\text{onset}}$ ). <sup>b</sup>) Determined in MeCN solution (*Abs* < 0.1) at room temperature, with 9,10-diphenylanthracene ( $\Phi_f = 0.90$  in hexane) as standard.

increased electron density associated with the thiophene group and the weak intramolecular donor – acceptor interaction inducing a polarization in the electronically excited state [40]. The fluorescence quantum yield ( $\Phi_f$ ) of compounds  $3\mathbf{a} - 3\mathbf{f}$  in MeCN solution is relatively high, ranging from 0.27 for  $3\mathbf{d}$  to 0.96 for  $3\mathbf{e}$  by using 9,10-diphenylanthracene ( $\Phi_f = 0.90$  in hexane) [41] as a reference. Comparison of compound  $3\mathbf{a}$  with  $3\mathbf{b}$  and  $3\mathbf{e}$  shows that replacing the H-atoms in *para-* or *ortho*-position by Me groups leads to an increase of  $\Phi_f$  by more than 15%. Compared to  $3\mathbf{a}$ , the  $\Phi_f$  of  $3\mathbf{d}$  is significantly lower. The low emission quantum yield of  $3\mathbf{d}$  is largely due to the donor – acceptor – donor nature of this bis-imidazole, and consequently to intramolecular charge transfer, which is known as an important luminescence-quenching mechanism in such donor – acceptor systems [42]. Comparison of compound

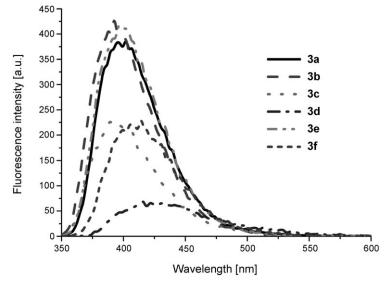



Fig. 2. Fluorescence spectra of 3a-3f in MeCN solution ( $c = 10^{-5}$  M)

**3a** with **3f** indicates that the substitution of the *para* H-atoms of the phenyl substituents by MeO groups hardly changes the fluorescence quantum yield. Comparison of compound **3a** with **3c** indicates that the substitution of the *para* H-atoms by Cl substituents leads to a slight decrease of the fluorescence quantum yield **3c**, the low value of  $\Phi_f$  being the result of competing  $S_1 \rightarrow T_1$  intersystem crossing because of the 'internal heavy-atom effect' [22]. Optical band gaps ( $E_g^{Opt}$ ) determined by the absorption edge of the solution spectra are also given in *Table 1*, which vary from 3.06 eV in **3d** to 3.28 eV in **3e**.

Solvent Effects on the Absorption and Fluorescence Properties. The absorption and emission spectra of 3d in various solvents, *i.e.*, in several protic (MeOH and HCO<sub>2</sub>H) and aprotic (MeCN, acetone, CDCl<sub>3</sub>, AcOEt, Et<sub>2</sub>O, toluene, and THF) solvents, are shown in Figs. 3 and 4. Compound 3d shows a pronounced change in position and intensity of the absorption or emission band accompanying a change in the polarity of the solvent. This phenomenon can also be explained by the effects of charge transfer which cause the change of color [25]. The UV/VIS absorption and fluorescence properties of 3d in various solvents are given in Table 2, 3d has a nearly identical absorption maximum ( $\lambda_{max}^{Abs}$ ) (from 348 to 351 nm) and excitation maximum ( $\lambda_{max}^{Ex}$ ) (from 348.5 to 354 nm) in the above nine solvents. A red shift of the emission maximum  $(\lambda_{max}^{Em})$ , which ranges from 397 nm in nonpolar solvents such as toluene, to 419.5 nm in medium-polar solvents such as MeCN, and then to 438 nm in strongly polar solvents such as MeOH. The common feature of these latter solvents is the presence of a lone pair of electrons which can form an H-bond with the N-H group of 3d. In HCO<sub>3</sub>H, the red shift of the emission may be the result of the excited-state protonation [26]. Phenomena of color change in different solvents of these disubstituted phenylenelinked bis-imidazoles such as **3d** were more obvious than those of the tetrasubstituted

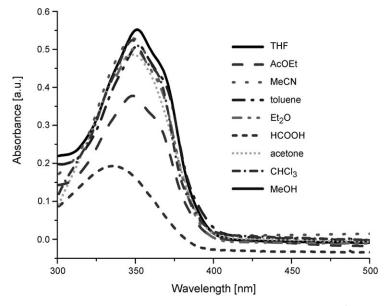



Fig. 3. UV/VIS Absorption spectra of 3d in various solvents ( $c = 10^{-5}$  M)

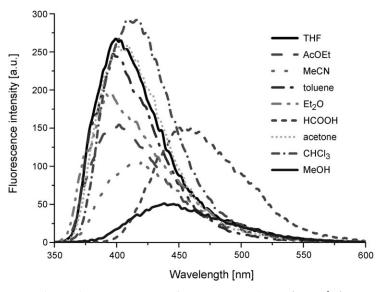



Fig. 4. Fluorescence spectra of **3d** in various solutions ( $c = 10^{-5}$  M)

phenylene-linked bis-imidazoles [25]. This might be due to the steric hindrance. The disubstituted phenylene-linked bis-imidazoles can easier form H-bonds with solvents than the tetrasubstituted phenylene-linked bis-imidazoles.

|                    | $\epsilon \; [10^{-4} \; \mathrm{m}^{-1} \; \mathrm{cm}^{-1}]$ | $\lambda_{\max}^{Abs}$ [nm] | $\lambda_{\max}^{Ex}$ [nm] | $\lambda_{\max}^{\text{Em}}$ [nm] | Stokes shift [nm] |
|--------------------|----------------------------------------------------------------|-----------------------------|----------------------------|-----------------------------------|-------------------|
| Toluene            | 3.27                                                           | 352                         | 353                        | 397                               | 44                |
| AcOEt              | 2.53                                                           | 348                         | 348.5                      | 397                               | 48.5              |
| $Et_2O$            | 3.28                                                           | 349                         | 350                        | 392.5                             | 42.5              |
| THF                | 3.67                                                           | 351                         | 351.5                      | 399.5                             | 48                |
| Acetone            | 3.20                                                           | 348                         | 350                        | 409.5                             | 59.5              |
| CHCl <sub>3</sub>  | 3.15                                                           | 348                         | 354                        | 411.5                             | 57.5              |
| MeCN               | 3.46                                                           | 348                         | 349                        | 419.5                             | 70.5              |
| MeOH               | 3.18                                                           | 351                         | 350                        | 438                               | 88                |
| HCO <sub>2</sub> H | 1.27                                                           | 336                         | 353                        | 455.5                             | 102.5             |

Table 2. UV/VIS Absorption and Fluorescence Properties of 3d in Various Solvents ( $c = 10^{-5}$  M)

**Conclusions.** – In summary, a practical and effective microwave-assisted synthetic method under solvent-free conditions was successfully applied to the synthesis of the disubstituted phenylene-linked bis-imidazole derivatives 3a-3f in 61.6-85.6% yields. The optical properties of 3a-3f were investigated, showing that this series of disubstituted phenylene-linked bis-imidazole derivatives can serve as electron-transporting electro-luminescent materials, blue-light-emitting materials, and nonlinear optical materials.

This work was supported in part by the *Academic Fund of Nanjing University of Technology* (No. 39704026).

#### **Experimental Part**

General. All starting materials and solvents were obtained from commercial suppliers and used as obtained. Compounds **2a** [43], **2b** [44], **2c** [45], **2d** [46], **2e** [47], and **2f** [48] were prepared according to the published procedures. Microwave synthesis: *WBFY-201* apparatus. M.p.: *X-4* microscope electro-thermal apparatus; uncorrected. UV and Fluorescence spectra: *HP-8453*-UV/VIS/near-IR spectrophotometer and *LS-55* spectrofluorometer, resp.;  $\lambda_{\text{max}}^{Abs}$  ( $\varepsilon / 10^4 \text{ M}^{-1} \text{ cm}^{-1}$ ) and  $\lambda_{\text{max}}^{\text{max}}$  in nm; *Stokes* shift in nm;  $E_{g}^{\text{Opt}}$  in eV; optical pathlength of cells, 1 cm under all conditions; excitation wavelength =  $\lambda_{\text{max}}^{\text{Em}}$  of the concerned compound. <sup>1</sup>H- and <sup>13</sup>C-NMR Spectra: *Bruker* spectrometer at 500 and 300 MHz, resp.; in CDCl<sub>3</sub> or (D<sub>6</sub>)DMSO;  $\delta$  in ppm rel. to Me<sub>4</sub>Si as internal standard, *J* in Hz. EI-MS: *Agilent 1100* LC/DAD/MSD; in *m/z*. Elemental analyses: *Vario-EL-III* elemental analyzer.

*Benzene-1,4-dicarboximidamide Hydrochloride (1:2)* (1). Benzene-1,4-dicarbonitrile (7.4 g, 58 mmol) was added in small portions over 30 min to a well-stirred soln. of  $(Me_3Si)_2NLi$  in THF (240 ml, 240 mmol). The mixture was stirred at r.t. for another 3 h and then cooled to 0° in an ice bath. The reaction was quenched by careful addition of 6M HCl/EtOH (200 ml), and the mixture set aside for several hours. The precipitate was then filtered, washed with Et<sub>2</sub>O, and recrystallized from EtOH/H<sub>2</sub>O 1:1:1 (10.4 g, 96%). White powder. M.p. > 300° ([49]: > 300°). <sup>1</sup>H-NMR ((D<sub>6</sub>)DMSO, 300 MHz): 9.62 (*s*, 2 <sup>+</sup>NH<sub>2</sub>=); 8.37 (*s*, 2 NH<sub>2</sub>); 8.03 (*s*, 4 arom. H).

2-Bromo-1-phenylethanone (2a). Yield 85.0%. White powder. M.p.  $50-51^{\circ}$  ([43]:  $49-51^{\circ}$ ). <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 300 MHz): 7.98 (d, J=4.4, H-C(2'), H-C(6')); 7.61 (dd,  $J_1=J_2=4.41$ , H-C(4')); 7.48 (dd, J=4.53, 4.86, H-C(3'), H-C(5')); 4.45 (s, CH<sub>2</sub>Br).

2-Bromo-1-(4-methylphenyl)ethanone (2b). Yield 85.5%. White powder. M.p.  $51-53^{\circ}$  ([44]:  $51-52^{\circ}$ ). <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 300 MHz): 7.88 (*d*, J = 5.0, H–C(2'), H–C(6')); 7.28 (*d*, J = 4.8, H–C(3'), H–C(5')); 4.43 (*s*, CH<sub>2</sub>Br); 2.43 (*s*, Me).

2-Bromo-1-(4-chlorophenyl)ethanone (**2c**). Yield 90.2%. White plates. M.p. 95–96° ([45]: 95–96°). <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 300 MHz): 7.93 (d, J = 5.1, H-C(2'), H-C(6')); 7.47 (d, J = 5.2, H-C(3'), H-C(5')); 4.40 ( $s, CH_2Br$ ).

2-Bromo-1-(thiophen-2-yl)ethanone (2d). Yield 88.0%. White plates. M.p. 31–33° ([46]: 33–35°). <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 300 MHz): 7.71 (*m*, H–C(3')); 7.62 (*m*, H–C(5')); 7.17 (*m*, H–C(4')); 4.37 (*s*, CH<sub>2</sub>Br).

2-Bromo-1-(2,4-dimethylphenyl)ethanone (2e). Yield 80.0%. White plates. M.p.  $41-42^{\circ}$  ([47]:  $41^{\circ}$ ). <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 300 MHz): 7.60 (d, J = 4.7, H-C(2')); 7.08 (d-like, 2 arom. H); 4.40 (s, CH<sub>2</sub>Br); 2.51 (s, Me); 2.37 (s, Me).

2-Bromo-1-(4-methoxyphenyl)ethanone (**2f**). Yield 88.0%. White plates. M.p.  $69-71^{\circ}$  ([48]:  $68-70^{\circ}$ ). <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 300 MHz): 8.07 (*d*, J=5.4, H–C(2'), H–C(6')); 6.95 (*d*, J=5.4, H–C(3'), H–C(5')); 4.39 (*s*, CH<sub>2</sub>Br); 3.89 (*s*, MeO).

Phenylene-Linked Bis-imidazole Derivatives **3**: General Procedure. Hydrochloride **1** (1.18 g, 5 mmol), 1-aryl-2-bromoethanone **2** (10–12 mmol), KHCO<sub>3</sub> (2 g, 20 mmol), and NaCl (5.85 g, 100 mmol) were thoroughly mixed in a mortar. The mixture was transferred into a beaker and irradiated with microwaves for 2 min (300 W). Then, the mixture was cooled to r.t. and irradiated for 2 min again. This procedure was repeated until the completion of the reaction (TLC (AcOEt)) monitoring. The crude product was washed with hot brine and recrystallized from MeOH/THF 1:1.

2,2'-(1,4-Phenylene)bis[5-phenyl-1H-imidazole] (**3a**): Yield 75.2%. White solid. M.p. 283–286° ([24]: 187–289°). <sup>1</sup>H-NMR ((D<sub>6</sub>)DMSO, 300 MHz): 12.71 (br., 2 NH); 8.11 (*s*, 4 arom. H); 7.87 (*AA'* of *AA'BB'C*, *J* = 7.1, 4 arom. H); 7.79 (*s*, 2 arom. H); 7.39 (*BB'* of *AA'BB'C*, *J* = 7.3, 4 arom. H); 7.24 (*C* of *AA'BB'C*, *J* = 7.5, 2 arom. H). <sup>13</sup>C-NMR ((D<sub>6</sub>)DMSO, 300 MHz): 145.6; 129.9; 128.9; 128.4; 127.9; 126.2; 125.1; 124.3. EI-MS: 363.2 ([M + H]<sup>+</sup>, C<sub>24</sub>H<sub>18</sub>N<sub>4</sub><sup>+</sup>; calc. 362.15). Anal. calc. for C<sub>24</sub>H<sub>18</sub>N<sub>4</sub>·2 H<sub>2</sub>O (398.47): C 72.34, H 5.57, N 14.06; found: C 72.25, H 5.60, N 13.99.

2,2'-(1,4-Phenylene)bis[5-(4-methylphenyl)-1H-imidazole] (**3b**): Yield 70.4%. White solid. M.p. > 310°. <sup>1</sup>H-NMR ((D<sub>6</sub>)DMSO, 300 MHz): 12.64 (br., 2 NH); 8.10 (s, 4 arom. H); 7.76 (*AA'* of *AA'BB'*, *J* = 7.10, 4 arom. H); 7.68 (s, 2 arom. H); 7.21 (*BB'* of *AA'BB'*, *J* = 6.9, 4 arom. H); 2.33 (s, 2 Me). <sup>13</sup>C-NMR ((D<sub>6</sub>)DMSO, 300 MHz): 145.5; 135.4; 129.9; 129.0; 125.1; 124.3; 114.0; 20.7. EI-MS: 391.2 ([*M*+H]<sup>+</sup>, C<sub>26</sub>H<sub>22</sub>N<sub>4</sub><sup>+</sup>; calc. 390.18), 389.1 ([*M*-H]<sup>+</sup>), 779.0 ([2*M*-H]<sup>+</sup>), 781.2 ([2*M*+H]<sup>+</sup>). Anal. calc. for C<sub>26</sub>H<sub>22</sub>N<sub>4</sub> · 2 H<sub>2</sub>O (426.51): C 73.22, H 6.14, N 13.14; found: C 73.26, H 6.18, N 13.19.

 $\begin{array}{l} 2,2'-(1,4-Phenylene)bis[5-(4-chlorophenyl)-1H-imidazole] \quad \textbf{(3c)}: \mbox{ Yield $85.6\%$. White solid. M.p.} > 310^{\circ}.\ ^{1}\text{H-NMR} \ ((D_{6})\text{DMSO}, 300\ \text{MHz}): 12.67\ (br., 2\ \text{NH}); 8.10\ (s, 4\ \text{arom. H}); 7.89\ (AA'\ \text{of }AA'BB', J=8.3, 4\ \text{arom. H}); 7.76\ (s, 2\ \text{arom. H}); 7.43\ (BB'\ \text{of }AA'BB', J=8.3, 4\ \text{arom. H}).\ ^{13}\text{C-NMR} \ ((D_{6})\text{DMSO}, 300\ \text{MHz}): 145.8; 133.5; 132.7; 130.5; 129.9; 128.5; 128.0; 126.0; 125.2; 124.5.\ \text{EI-MS}: 429.1\ ([M-H]^+, C_{24}\text{H}_{16}\text{N}_4\text{Cl}^+, \text{calc. 430.08}). \ \text{Anal. calc. for } C_{24}\text{H}_{16}\text{Cl}_2\text{N}_4 \cdot 2\ \text{H}_2\text{O}\ (467.35): C\ 61.68, H\ 4.31, N\ 11.99; found: C\ 61.59, H\ 4.27, N\ 12.12. \end{array}$ 

 $\begin{array}{l} 2,2'-(1,4-Phenylene)bis[5-(thiophen-2-yl)-1H-imidazole] \quad \textbf{(3d)}: \mbox{ Yield 61.6\%. White solid. M.p.} > 310^{\circ}. \mbox{ }^1\text{H-NMR} \ ((D_6)\text{DMSO}, 300 \ \text{MHz}): 12.77 \ (br., 2 \ \text{NH}); 8.04 \ (s, 4 \ arom. \ \text{H}); 7.68 \ (s, 2 \ \text{H}); 7.35 \ (AB \ of \ ABC, 4 \ arom. \ \text{H}); 7.06 \ (C \ of \ ABC, J = 4.6, 2 \ arom. \ \text{H}). \mbox{ }^{13}\text{C-NMR} \ ((D_6)\text{DMSO}, 300 \ \text{MHz}): 145.2; \\ 138.5; 136.8; 129.7; 128.5; 127.6; 125.2; 124.6; 123.2; 121.4; 113.8. \ \text{EI-MS}: 373.1 \ ([M-H]^+, \ C_{20}\text{H}_{14}\text{N}_4\text{S}_2^+; calc. 374.07). \ Anal. \ calc. \ for \ C_{20}\text{H}_{14}\text{N}_4\text{S}_2 \cdot 2 \ \text{H}_2\text{O} \ (410.51): \ C \ 58.52, \ \text{H} \ 4.42, \ \text{N} \ 13.65; \ found: \ C \ 58.59, \ \text{H} \ 4.37, \ \text{N} \ 13.52. \end{array}$ 

2,2'-(1,4-Phenylene)bis[5-(2,4-dimethylphenyl)-1H-imidazole] (**3e**): Yield 65.6%. White solid. M.p. > 310°. <sup>1</sup>H-NMR ((D<sub>6</sub>)DMSO, 300 MHz): 12.64 (br., 2 NH); 8.10 (*s*, 4 arom. H); 7.73 (*s*, 2 arom. H); 7.38 (*s*, 2 arom. H); 7.07 (*BC* of *ABC*, 4 arom. H); 2.30 (*s*, 2 Me); 2.17 (*s*, 2 Me). <sup>13</sup>C-NMR ((D<sub>6</sub>)DMSO, 300 MHz): 144.8; 135.4; 134.2; 131.3; 130.0; 128.0; 126.2; 125.1; 21.4; 20.6. EI-MS: 419.3 ([*M* + H]<sup>+</sup>, C<sub>28</sub>H<sub>26</sub>N<sub>4</sub><sup>+</sup>; calc. 418.22), 417.3 ([*M* – H]<sup>+</sup>). Anal. calc. for C<sub>28</sub>H<sub>26</sub>N<sub>4</sub> · 2 H<sub>2</sub>O (454.56): C 73.98, H 6.65, N 12.33; found: C 73.79, H 6.57, N 12.48.

2,2'-(1,4-Phenylene)bis[5-(4-methoxyphenyl)-1H-imidazole] (**3f**): Yield 64.8%. White solid. M.p. > 310°. <sup>1</sup>H-NMR ((D<sub>6</sub>)DMSO, 300 MHz): 12.59 (br., 2 NH); 8.42 (s, 4 arom. H); 7.80 (m, 6 arom. H); 6.91 (s, 4 arom. H); 3.78 (s, 2 MeO). <sup>13</sup>C-NMR ((D<sub>6</sub>)DMSO, 300 MHz): 158.0; 157.2; 145.3; 141.2; 130.0; 125.7; 125.1; 113.9; 113.2; 55.6. EI-MS: 423.2 ( $[M + H]^+$ , C<sub>26</sub>H<sub>22</sub>N<sub>4</sub>O<sub>2</sub><sup>+</sup>; calc. 422.17), 421.1 ( $[M - H]^+$ ). Anal. calc. for C<sub>26</sub>H<sub>22</sub>N<sub>4</sub>O<sub>2</sub> · 2 H<sub>2</sub>O (458.51): C 68.11, H 5.72, N 12.22; found: C 68.29, H 5.57, N 12.16.

## HELVETICA CHIMICA ACTA - Vol. 93 (2010)

### REFERENCES

- [1] M. D. Shults, D. A. Pearce, B. Imperiali, J. Am. Chem. Soc. 2003, 125, 10591.
- [2] S. C. Burdette, C. J. Frederickson, W. M. Bu, S. J. Lippard, J. Am. Chem. Soc. 2003, 125, 1778.
- [3] M. H. Lee, S. J. Lee, J. H. Jung, H. Lim, J. S. Kim, Tetrahedron 2007, 63, 12087.
- [4] M. Heilemann, P. Dedecker, J. Hofkens, M. Sauer, Laser Photon. Rev. 2009, 3, 180.
- [5] S. J. Lord, N. R. Conley, H. D. Lee, S. Y. Nishimura, A. K. Pomerantz, K. A. Willets, Z. K. Lu, H. Wang, N. Liu, R. Samuel, R. Weber, A. Semyonov, M. He, R. J. Twieg, W. E. Moerner, *ChemPhysChem* 2009, 10, 55.
- [6] G. J. Brown, A. P. de Silva, M. R. James, B. O. F. McKinney, D. A. Pears, S. M. Weir, *Tetrahedron* 2008, 64, 8301.
- [7] T. Fukaminato, T. Sasaki, T. Kawai, N. Tamai, M. Irie, J. Am. Chem. Soc. 2004, 126, 14843.
- [8] J. Cusido, E. Deniz, F. M. Raymo, Eur. J. Org. Chem. 2009, 13, 2031.
- [9] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, *Chem. Rev.* 1997, 97, 1515.
- [10] M. J. Hall, L. T. Allen, D. F. O'Shea, Org. Biomol. Chem. 2006, 4, 776.
- [11] M. D. Bowman, M. M. Jacobson, H. E. Blackwell, Org. Lett. 2006, 8, 1645.
- [12] N. A. Grigorenko, C. J. Leumann, Chem. Eur. J. 2009, 15, 639.
- [13] D. I. Cherny, I. C. Eperon, C. R. Bagshaw, Eur. Biophys. J. 2009, 38, 395.
- [14] S. Liu, P. Jiang, G. L. Song, R. Liu, H. J. Zhu, Dyes Pigm. 2009, 81, 218.
- [15] T. Mitsumori, M. Bendikov, O. Dautel, F. Wudl, T. Shioya, H. Sato, Y. Sato, J. Am. Chem. Soc. 2004, 126, 16793.
- [16] R. Mondal, B. K. Shah, D. C. Neckers, J. Org. Chem. 2006, 71, 4085.
- [17] Y. Qian, G. M. Xiao, G. Wang, Y. M. Sun, Y. P. Cui, C. W. Yuan, Dyes Pigm. 2006, 71, 109.
- [18] W. Jiang, D. Wang, S. W. Guan, H. Gao, Y. L. Zhao, Z. H. Jiang, W. N. Gao, D. Zhang, D. M. Zhang, J. Photochem. Photobiol. A: Chem. 2008, 197, 426.
- [19] J. Santos, E. A. Mintz, O. Zehnder, C. Bosshard, X. R. Bu, P. Günter, Tetrahedron Lett. 2001, 42, 805.
- [20] K. Okada, K. Imamura, M. Oda, A. Kajiwara, M. Kamachi, K. Ishino, K. Tashiro, M. Kozaki, K. Sato, T. Takui, Synth. Met. 1999, 103, 2308.
- [21] Y. Inouye, Y. Sakaino, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2000, C56, 884.
- [22] N. Xie, Y. Chen, J. Photochem. Photobiol. A: Chem. 2007, 189, 253.
- [23] M. Y. Berezin, J. Kao, S. Achilefu, Chem. Eur. J. 2009, 15, 3560.
- [24] S. D. Jadhav, N. D. Kokare, S. D. Jadhav, J. Heterocycl. Chem. 2008, 45, 1461.
- [25] N. Fridman, M. Kaftory, S. Speiser, Sens. Actuators, B 2007, 126, 107.
- [26] N. Fridman, M. Kaftory, Y. Eichen, S. Speiser, J. Photochem. Photobiol. A: Chem. 2007, 188, 25.
- [27] N. Fridman, M. Kaftory, Y. Eichen, S. Speiser, J. Mol. Struct. 2009, 917, 101.
- [28] J. N. Sangshetti, N. D. Kokare, S. A. Kotharkar, D. B. Shinde, Chin. J. Catal. 2008, 19, 762.
- [29] N. Fridman, S. Speiser, M. Kaftory, Cryst. Growth Des. 2006, 6, 1653.
- [30] S. T. Mahadik, S. V. Sunthankar, Indian J. Chem. 1975, 13, 1369.
- [31] B. Li, C. K.-F. Chiu, R. F. Hank, J. Murry, J. Roth, H. Tobiassen, Org. Synth. 2005, 81, 105
- [32] T. Wiglenda, R. Gust, J. Med. Chem. 2007, 50, 1475.
- [33] D. S. Weinstein, W. Liu, K. Ngu, C. Langevine, D. W. Combs, S. Zhuang, C. Chen, C. S. Madsen, T. W. Harperc, J. A. Robl, *Bioorg. Med. Chem. Lett.* 2007, 17, 5115
- [34] L. A. Esposito, F. M. Hudson, T. Lake, J. Cummings, M. Weigele, A. Snow, L. Larsen, US Pat. 20090111863, 2009 (*Chem. Abstr.* 2009, 150, 480925).
- [35] N. Hauel, K. Arndt, H. Doods, K. Klinder, R. Pfau, WO Pat. 2008084218, 2008 (Chem. Abstr. 2008, 149, 153083).
- [36] D. Cheng, D. Han, W. Gao, J. Jiang, S. Pan, Y. Wan, Q. Jin, WO Pat. 2008014291, 2008 (*Chem. Abstr.* 2008, 148, 191938).
- [37] S. Caddick, R. Fitzmaurice, Tetrahedron 2009, 65, 3325.
- [38] X.-D. Yang, L. Li, H.-B. Zhang, Helv. Chim. Acta 2008, 91, 1435.
- [39] M.-H. Shih, C.-H. Tsai, Y.-C. Wang, M.-Y. Shieh, G.-L. Lin, C.-Y. Wei, Tetrahedron 2007, 63, 2990.
- [40] C. J. Tonzola, M. M. Alam, W. Kaminsky, S. A. Jenekhe, J. Am. Chem. Soc. 2003, 125, 13548.

- [41] D. F. Eaton, Pure Appl. Chem. 1988, 60, 1107.
- [42] S. A. Jenekhe, L. Lu, M. M. Alam, Macromolecules 2001, 34, 7315.
- [43] A. O. Terent'ev, S. V. Khodykin, I. B. Krylov, Y. N. Ogibin, G. I. Nikishin, Synthesis 2006, 7, 1087.
- [44] Q.-L. Wei, S.-S. Zhang, J. Gao, W.-H. Li, L.-Z. Xu, Z.-G. Yu, Bioorg. Med. Chem. 2006, 14, 7146.
- [45] S. J. Zhang, Z. G. Le, Chin. Chem. Lett. 2005, 16, 1590.
- [46] S. Kajigaeshi, T. Kakinami, T. Okamoto, S. Fujisaki, Bull. Chem. Soc. Jpn. 1987, 60, 1159.
- [47] F. Wang, H. Zheng, S. F. Zhang, Chin. J. Med. Chem. 2004, 14, 215.
- [48] V. A. Anisimova, A. A. Spasov, V. A. Kosolapov, A. F. Kucheryavenko, O. V. Ostrovskii, N. P. Larionov, R. E. Libinzon, *Pharm. Chem. J.* 2005, 39, 476.
- [49] J. Yang, R. Melendez, S. J. Geib, A. D. Hamilton, Struct. Chem. 1999, 10, 221.

Received January 11, 2010